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ABSTRACT

Let ~ 
denote the class of hidden Z-matrices, i .e . ,  N e c _f and only if

there exist Z-matrices X and Y such that the following two conditions are

satisfied :

(Ml) MX = Y

(M2) r
T
x + 8

T~ > o for some r,s > 0

Let P denote the class of real square matrices having positive principal minors.

The class C arises recently as a generalization of the class of Z—matrices [9],

[23], [24] . In this paper , we explore various matrix-theoretic aspects of the

class C n  P .

AMS (MOS) Subject Classif ication - 1502, l5A24 , 15A45 , 90C99

Key Words - Hidden Leontief , Hidden Z , Linear complementarity, Positivity of
principal minors ,

Work Unit Number 2 - Matrix Theory

EXP LANATION

Matrix theory has been playing a very important role in the theory and appli-

cations of the linear complementarity problem . It is especially useful ir. the devel-

opment of efficient algorithms for solving large-scale linear omplementarity problems.

Part of its usefulness is due to the fact that it allows the matrix structures which

might be inherent in the problems , to be exploited profitably. Among the classes of

Sponsored by the United States Army under Contract No. DAAG29—75—C—0024 and the
National Science Foundation under Grant No. MCS75-17335.



matrices which arise from the various applications of the linear coznplementarity

problem is the class of K-matrices, i.e. real square matrices whose off—diagonal

entries are nonpositive (so—called Z—matrices) and whose principal minors are all

positive (so—called P-matrices). The class of K—matrices also plays very important

roles in other fields.

Recently, an extension of the class of Z—matrices , denoted by C was

introduced by Mangasarian who showed that a solution to a linear complementarity

problem with a matrix in C can be obtained , numerically , by solving a suitable

linear program. Mangasarian’s result has later been refined by R. W. Cottle and

the author. The purpose of this paper is to explore various matrix-theoretic

aspects of matrices in C which are P-matrices as well.
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HIDDEN 7.—MATRICES WITh POSITIVE PRINCIPAL MINORS

.Jong-Shi Pang

1. INTRODUCTION. The theory and applications of the linear cornplementarity problem with

a S-matrix (i.e. a real square matrix whose off-diagonal entries are non-positive) have re-

ceived much attention in the literature [1) , [16), [20) [27) , [28) • [31), (37) , [41] . A

subclass of the class of Z-matrices, which is particularly important in the linear comple—

smntarity problem (and also in many other areas) is the class of K—matrices i.e. Z—rnatrices

that are also P-matrices (real square matrices having positive principal minors). The

theory and applications of the linear cornplementarity problem with a K—matrix have been

documented in many places in the literature [3] , 15), 17), 18), (11], [12), [36]. A

major difference between a linear cornplementarity problem with a S-matrix and that with

a K—matrix is that the former problem is not always feasible~ whereas the latter problem

always has a unique solution [1?), [39).

Recently, an extension of the class of Z-matrices was introduced by Mangasarian

in his study of solving linear complcnsentarity problems as linear programs. See [23)

124). This is the class C of real square matrices M for which there exist Z—matrices

X and Y satisfying the following two conditions :

(Mi) MX~~~~Y

(M2 ) rT~ ~ > 0 for some r,s > 0

Mangasarian ’s results in (23), (24) have I’een refined and extended by R. W. Cottle and

the author (9), [10), by Mangasarian himself [25) and by the author 133 1. Some basic

properties of matrices belonging to C have been obtained in (9). It is clear that if M

is a S-matrix, then M C . Several other classes of matrices belonging to C are given

in [9), 125), 13 11, [32). The class 
~ appears to he a very appropriate generalization of

*
the class 7. , because for one thing, many of the properties originalLy possessed by a 5-

matrix are carried over to matrices in C . This is particularly true in the contexts of

the linear complemontarity problem and of the Leontief substitution systems. See [34).

We propose to call matrices in C hidden 7.-matrices. The word “Midden ” is borrowed from

‘ The letters K, P and 7. wil l also denote the corresponding classes of matrices .

Sponsored by The United States Army undcr Contract No. DAAG29-75-C-0024 and the National
Science Foundation under Grant No. MCS7S-17385.
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that in “hidden Leontief matrices.” These hidden Leontief matrices were introduced by

Saigal [38) in h~s study of a generalized Leontief property of rectangular matrices. Re-

call that an n X m  matrix A is said to be Leontief ([14], [43) ) if it has at most one

positive entry in each column and there is a vector x > 0 such that Ax > 0 . It is

clear that if M is a Z-matrix, then the matrix (1,1~1
T
) is Leontief .  Slightly modif y-

ing the definitions in [22) , [38] , we say that an nxm—matrix A is hidden Leontief if

there exists an n x n  nonsingular matrix 0 such that DA is Leontief. It has been

shown [34 , Prop. 4.1] that if the matrix M is hidden Z, then the matrix (I,M
T
) is

hidden Leontief. The matrix (I,M
T) arises naturally in the linear programming formula—

tion of a linear complementarity problem with a. hidden 5—matrix M - See [34] .

Numerous equivalent conditions under which a Z-matrix will become a K—matrix have

been surveyed in [17]. It is very natural to ask the question: What are some of the

matrix-theoretic properties of the class of K—matrices that are carried over to the class

C A P? Therefore the purpose of this paper is to provide at least a partial answer to

this question by exploring various matrix-theoretic aspects of matrices belonging to

C A P . The essential result is a theorem which provides a necessary and sufficient

condition for a hidden 7.—matrix to be a P—matrix. As an application of this characteri—

zatio,t , we shall establish a representation theorem for matrices in C n P and identif y

several classes of matrices belonging to C n P -

—2—
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2. TIlE CLASS C n P. We start by explaining the notations and reviewing some facts to

f l X m
be used later. We denote the class of all n xm  real matrices by R - We denote

the cardinality of a set S by Is~ - Let 14 c R
f lX in and a,B c {i,. . ,n) . We define

ina
1B1

14aB
in ... in

where a = .. ,a )  and 8 — 
~~~~~ 

- ‘8
~~ 

with 1 < n and 1 <

< i~ < n . In particular , 14 is a principal submatrix of N . Similarly, if q

is an n—vector, we define q = (q ,... q ) ’7 
. Let 14 be a square matrix. By a

principal rearrangement of M, we mean a matrix M — P NP where P is a permutation

matrix. Clearly, the classes of K-, P- and Z-inatrices are invariant under principal re-

arrangements. Moreover , the property of a matrix belonging to any one of the three

classes K, P and Z is inherited by each of its principal submatrices. Let A be a

nonsingular principal submatrix of a square matrix M - Let t4 be a principal rearrange-

ment of M such that M (~ ~ ) - Then the Schur complement of A in H, denoted by

(14/A) is the matrix 0 - CA ’S . Properties and applications of the Schur complements

have been surveyed in [4). It has been proved [13] that if N is a K-matrix , then so

is every Schur complement in M . Let M
05 

be a nonsinqular principal subrnatrix of a

T M M
8matrix 14 c P . Let P be a per-mutation matrix such that P HP = ( ) where

= {l,.. . ,n) \ci . The matrix M 5 PM P where

* (14
1 

-M ’M
~ 

aa aa aB

114 14 ’ 14 - M  H HBa aa 88 Ba aa ciB

*
Is called a principal pivot transform of H . The matrix H is obtained from N by

performing a blo.k pivot on 14 . Properties and applications of the principal pivot

t ransforms are well recognized in mathematical programming [21 , [61 , [191 , 1421 . It has

been shown 16) that if N is a P-matrix, then so is each of its principal pivot trans-

forms. Note that every Schur car ~. in M appears as a principal subtnatrix of a

pr inci pal pivot transform of H

—3— 
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A nonnegative matrix Q a Rn 
X ~ j S said to be sub-stochastic if Qe < e where

e is the vector of 1’s - Clearly, if Q is sub-stochastic, then the matrix I — Q a K

A matrix N ~ R~ 
X n is said to be an S-matrix [18) if there exists a vector x > 0 such

that Mx > 0 - It has been shown that every P— matrix is an S-matrix [18) and that every

B—matrix which is also an S—matrix is i ndeed a K—matrix [17) . Let A a R~ 
UI be Leontief.

It is said to be totally Leontief if there exists a vector y > 0 such that yTA > 0 -

Clearly, if 14 is a K-matrix , then the matrix (I ,M
T
) is totally Leontief. Let A c R

m x m
.

It is said to be hidden totally Leontief if there is an n x n  nonsingular matrix 0 such

that DR is totally Leontief.

A pair of real square matrices (A,B) of the same order n is said to have the

P —property if for any two complementary index sets ci and B in {l,. . ,n), the matrix

A B
(

00 aB is in P . In particu lar, both A and B are in P . The P—property was in—
Ba 88

traduced recently by I. Kaneko [21] in his study of a special class of linear complemen—

tarity problems with applications to certain structural engineering problems. It is clear

that a matrix H is a P-matrix if and only if the pair of matrices (I,MT) has the

P -property.

We are now ready to establish our results. The first one is the main theorem

which provides a necessary and sufficient condition for a hidden 7.-matrix to be a P—matrix.

The theorem genera l izes  the fact that a Z-matrix is in P if and only if it is an S-matrix.

n X n
Theorem I. Let M a C A R . Then the fol lowing are equivalent :

(1) 14 is a P—matrix .

(2) 14 is an S—matrix.

Proof: (1) ~ (2) . This is true regardless of what M is and has been mentioned above .

(2) ~ (1) . This is the non-trivial part of the theorem and is of fundamental

importance throughout the paper. We use induction on n . The implication is obviously

true for n = 1 - Suppose that it is true for all matrices of order < n . Consider a

n x n
matrix N a C A R which is an S-matrix as well. Let X and Y be Z—matrices sat-

isfying the defining conditions (Hi) and (142). According to (9, Thm 3.9), the matr ix  X

is monsingular and the matrix (XT,Y
T
) is Leontief. Since H is an S-matrix , there

exists a vector V C R’~ such that )f~
, ‘ 0 and Yv ‘ 0 . Since (XT,YT) is Leontief ,

—4—
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such a vector v must be positive (see [14] e . g . ) .  Hence , if a and B are any two corn-
x x

plementary index sets in (1,.. .,n} , the matrix cici 08) is in K . In par ticular , we

~8ci ~ 88
have det x > 0 and det Y > 0 . Therefore det 74 > 0 Thus it remains to show that

every proper principal suhinatrix of 14 has positive determinant. To prove this, it suf-

fices to show that if M is a proper principal submatrix of 74, then Zl~~ satisfies

the assumptions in the induction hypothesis. In other words, we need to show that

a C A Rt0~ and there exists a vector y e RN such that y > 0 and M~~ y > 0

Since every principal rearrangement of 74 belongs to C (with X and 1’ rearranged ac—

cordingly) and is obviously an S-matrix , we may assume, wi thout loss of generality, that

14 is a leading principal submatrix of 74 - Let B = (1, . . .  ,n )\  a - We have

(14 14 ) I x  x \ = ( Y  I’ ) .
aci aB I ~~ 08) cia ci~lx x

88

By an easy calculation, we may deduce

ii (X - x  x 1 x ) = Y  - y  x 1 x
uci cia ci8 88 Be cia aB 88 Ba

or equivalently,

(1) 14 (X/X
8~
) = (W/x88)

where

1~
~
‘Ba 

X88

Since (X/X 86
) and (W/X~~ ) are both K-matrices,  it follows that M a C - Finally,

since X is a K-matrix, we have

(X/X 88
) v

0 
( (x/x88

) 0) (:;)
= (I ~X~~X~~) (~:: ~::) 

(:;) > 0 -

Similarly, we obtain

[W/X 88
) v  > 0

—5—
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Let y [X/X 88)v , then

14 y > 0 and y > 0
Wi

Therefore , 74 satisfies the assumptions in the induction hypothesis. This completes

the inductive step and also the proof of the theorem.

Corollary 1. If M E c n P, then the matr ix  AT 
= (I,M

T
) is hidden totally Leontief.

Proof: In fact, if H satisfies conditions (Ml) and (M2) for Z—matrices X and Y , then

condition (2) is equivalent to the fact that the matrix (XT,Y
T) = XTAT is totally Leontief.

The conclusion of the corollary is therefore an immediate consequence of Theorem 1.

If the P—matrix M sa t is f ies  conditions (Ml ) and (M2 ) for 7.—matr ices X and Y,

the proof of Theorem 1 shows that the pair of matrices (XT,y
T
) has the P—property. The

converse is also true and is contained in Proposition 1 below . The proposition generalizes

the fact that a P-matrix must necessarily be an S-matrix. The proof of the proposition

depends on the lemma below whose proof is omitted but can be found in [211 -

Lemma 1. (Kaneko [211) Let (A,B) have the P-property. Then for every q and a > 0

there exists a unique solution (~~) to the problem :

(iia) w = q + A v + B x > 0  v > 0

(jib) z a - v > 0  x > 0

T T(iic) W v z  x =  0

n x n  T TProposition 1. Let X ,Y c P . If (x ,y ) has the P-property, then there exists

a vector v such that Xv > 0 and Tv > 0

*
Proof Suppose there exist no such vectors v - Then by Gordon ’s alternative theorem

on the feasibility of a homogeneous system of linear equations [15 , Thin. 5, p. 136), it

follows that there exist nonnegative vectors r and s, not both vanishing such that

x
T
r + ~T 0

Let a U: r~ = 0) and B = (1 ,. ..,n} \a. Then we have

* The author is grateful to Professor I. Kaneko and Mr. W. Hallman for some valuable
discussion on this proof.

-6-



(XT) r + (M
T
) s + (V

T
) s 0a B B  a cia

which gives

:
8 

_ (y T) l (X T)
8
r

8 
— (~ T) 1 (Y T) s

Therefore , the vector ( ) is a solution to the problem (i i )  with q = 0, a = r
B

A (X
T
)88 

- (~
T
)
8 

(yT)
l 

(XT)
8 
and B (yT/(yT) )  - Obviously, the zero vector is

also a solution to the same problem. It is not hard to verify that the pair of matrices

f (y
T
) (X

T) \ I i 0’ /(~
T
) (x

T
)

i aa ci~~ cia a~

0 (X i’) - (yT) (yT)
l 

(x
T
) I ~ _ (~T) (y T )

_ l 

~
) ~~ (x’)

88 Ba cia aB 8cc as Ba 88

and

f(y
T
) (V

T
) I o\ f(y

T
) (VT)

0 (yT) - (1
T
) 1

T
)

l (yT)
e8 

) = 

_ ( y T
) ( y

T )
_ l 

~
) ~~(y T ) YT::

a lso has the P —property , therefore so does the pair ((X
T
)88 

— (V
T
) (yT)

1 
(X
T
)

(y
T) - (V

T
) (yT)

l (V T) ). Thus according to Lemma 1, we conclude that r8 
= 

~8 = O~

Hence r = s = 0, which is a contradict ion.  This establishes the proposition .

Remark 1. The matrices X and ‘1 in Proposition 1 are not required to be 7.—matrices.

The following corollary follows immediately from Theorem 1.

nX n
Corollary 2. Let H e C n R . If M satisfies either one of the following two

conditions, then 74 a P

(3) N > N for some S—matr ix  N~

(4) M > 0 and H has no vanishing rows .

We now ident i fy  several classes of matrices belonging to C A F

Corollary 3. Let H a R’~ 
X n 

- If M satisfies any one of the following conditions then

M a C  A P

(5) 14 1’ + abT for some K-matrix Y and nonnegative vectors a and b

(6) H —  2A -  B for some 7.-matrices A and B with B C  K and A > B

—7—
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k
1 n X n

(7) M I + 
~ 

a~ A where A a P is nonnegative and p (A) < 1, 1 > ci~ >

i=l
> 0 for i = 1, . .  .,k-l  and 1 ‘ k < — . If k = , then it is required in

addition that p ( A )  < p where p is the radius of convergence of the scalar power
— i

series 
~ 

a . x
i=l

(8) M = eR, I + sinh A , I + cosh A where A c  is nonnegative and p ( A )  < 1;

(9) 14 > 0, p (M) < 4, 2M (I -H) 1 and H has no vanishing rows.

Proof: A matrix M satisfying any one of these conditions has been shown to be hidden Z

For (5) and (6) , see [9] - For (7), (8) and (9), see (25] . A matrix H satisfying (5)

or (6) clearly satisfies (3). A matrix H satisfying (7), (8) or (9) clearly satisfies

(4). Therefore , by Corollary 2, we have H a P

It is well-known that a matrix t4 is in class K if and only if H can be rep-

resented as

(iii) M = s I - P

where s > p (P) and P > 0  . In fact , th is  representat ion was used or ig ina l ly  by

Ostrowski in def in ing K-matr ices  [30] . The following theorem generalizes this representa—

tion to the class C n P

nx n
Theorem 2. Let 14 a R . The following are equivalent :

(10) M a C n P ;

(11) N = (5
1
1 — 

~~ 
(s
2
1 — P2

) ’ for some nonnegative matrices P
1 

and P2, positive

scalars s
~ 

and which satisfy the condition below

(iv) 0 ~ (P1
u, P

2
u) < (s

1
u,  s2u) for some u a R

n 
-

In particular , if M = (I — F
1
) (I — P2

)
1 where P

1 
and P

2 
are sub—stochastic matrices

then N a  C n P

Proof: (10) ~ (11). Suppose H a C A P . Let X and Y be 7.-matrices satisfying

conditions (Ml) and (M2). By the proof of Corol lary 1, it fo llows tha t there exists a

nonnegative vector u such that Xe > 0 and Vu > 0 . Therefore, applying the repre—

sentation (iii) to X and Y, we obtain (11) readily.

-8-
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(11) ~ ( 10) - Let X = 5
2
1 — P2 

and V = s
1
1 - P

1 - Then ( iv)  implies that  both

X and V are K-matrices. In fact we have Xu > 0 and Vu > 0 - Therefore the matrix

M = TX 1 
a C - Moreover, with x = xu, we have x > 0 and 7~c > 0 - Hence H a P

The last conclusion of the theorem is obvious . This completes the proof of the

theorem .

Remark 2. If M has the representation (11), in particular , if condition (iv) is satis-

f ied , then it follows that

Cv) s. > p(P.) for i = 1,2 ,
1 1

or equivalently, both (s
1
1 — p

1
) and (s

2
1 — P

2
) are K—matrices .  Nevertheless , if  both

and P
2 and non-vanishing , then condition (v) alone is not sufficient for M to ~-r

a F—matrix. This is illustrated in the example below.

Example 1. Let P
1 

= (
~ ~

), P
2 

= (
~ ~

) ,  S
1 

8 and = 5 - It can easily be shown

that s. > p(p ) for i = 1,2. Nevertheless the matrix
1 1

M (5 1
1 — P

1
) (s 2 1 — P2)

1

— 
26 19

— 

~—8 
_5)

which must necessarily be hidden Z, is obviously not a P-matrix.

n X n  f l X f l
For A a P , we def ine  i ts companion matrix ~~(A) = (rn .) c R by

~~~~ 
a. .~~, i’~. . = — I a . . I  ~~~~~ 1 < i , j < n  -

Clearly, ?)?(A) a Z - The matrix A is said to be an H-matrix [30) if %‘~(A) c K - A

short survey on H-matrices has been given in [35). See also [40). It has been shown

(29) that the class of H-matrices includes those matrices that are strictly or irreducibly

diagonally dominant. Together with Corollary 3, the following proposition shows that

the class of H—matrices is a subclass of C n P

Proposition 2. Let M a ~~~~~ . Then the following are equivalent:

(12) 74 is an H—matrix.

(13) 14 satisfies condition (6).

(14) There exist Z-matrices A,B and C with A > C, B > C and C a K such that

14 u A + B - C  for some a > l  -

-~~~~~~~~~ —- - - 
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Moreover, if N satisfies any one of these conditions , then H a C a p -

proof: (12) ( 13) .  See (30] .

(13) ~ (14). This is obvious.

(14) ~ (12) .  According to [17 , ThIn. 4.6) , it suffices to show that ~ (14) > ciC

Thi s follows readi ly  if we wc i to down the entries of ~~(M) and app ly the conditions on

A ,B,C and a -

The last conclusion of the proposition is an immediate consequence of Corollary 3.

This completes the  proof of the theorem. -

The next example shows that the class of B—matrices is properly contained in

C n P .

( 2 - 2 -2 \
Example 2. Let 74 = J -i 2 1 j - Then 14 is a hidden Z-matrix because

0 2 /

( 2 -2 i o o\ ( -2 0
f — i . 2 i f  0 i — i f = f — 2  2 — 1  -

0 2/ _ i 0 1/ \— 3 0 2

Nevertheless there exist no K-matrices A such that 74 > A - Indeed if A were such a
( 2 -2 -2\

matrix, then we would have A < f-i 2 0 . According to Corollary 2 , this would

~—l 0 2 J
(2 — 2  — 2 \  I ( 2 — 2  —2\

imply that J - i 2 0 1  a K which is impossible because det j -1 2 0~~ = 0.
0 2/ (!~~

1 0 2/
Therefore , in particular , 74 can not be an H-matrix. Moreover , this matrix 14 sat isf ies

none of the conditions (5)-(9) identified in Corollary 3.

It is well-known that if H is a K-matr ix ,  then M ’ exists and is nonnegative.

Therefore M ’ can not be a 7.-matrix except in the trivial case where M is a positive

diagonal matr ix.  Nevertheless, H 1 a C A P . More generally, assertion (15) below

shows that the class C a P is invariant under inversion.

Proposition 3. Let H a C A P . Then the following arc true:

(15) The inverse of M belongs to C A P -

(16) Every pr inc ipa l  rearrangement of 14 belongs to C A P -

(17) Every principal submatrix of H belongs to 
~ 

A P -

(18) Every principal pivot transform of N belongs to ~ A P -

-10-



(19) Every Schur complement in M belongs to C A P

Proof: (15). This is obvious. Simply interchange the roles of X and V - In fact,

this assertion is a special case of (18).

(16). This is also obyious.

(17). This is contained in the proof of Theorem 1. See (i) and (ii).

(16) and (19). These are immediate consequences of (16), (17) and the lemma below.

n x n
Lemma 2. Let M a  C A P n K - Let X and V be Z-matrices satisfying (141) and

14 M \
(M2). Suppose M is partitioned into 14 M 14 

where a and 8 are two comple-
Ba 88/

mentary index sets in (1,..., n). Let X and V be partitioned into

Ix x f y y
I aa aB~~ cia aB

x = I  
~ 

I Y (
~ X

8 88/ ~ ~8

accordingly. Then

/M 1 
14
1 

14 ~ ~
‘ \ Ix x

(vi) ( ~~ 
-l 

cia ci~
1 

cia aS 
= ( cia aS 

-

\ TMBa ~~~~~~ ~~~ - M
5
M 74 X

8 
X
58/ \ 

‘
~5a 5B

Proof: We have
- (H M )(X x \ = ~~

y y
as aS cia aS as ciB

X
~ 

Ba SB

or equivalentl~ ,

H X + H X = 1as cia ciB Ba cia

N X + 1 4  X — Vcia aS aB 88 aS

Premult i p l y i ng M5~ throughout these latter two equalities and rearranging terms , we

obtain

(vii)  (N;~ ~~~~ ~a8~ (~;: ~ 
— (x

~5 
X

B -

Simil a r l y ,  we have

—11-

- .
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______ ‘ -  - 

~1

(M
8~ 

H88 ) (: 
~ 

(V
5 

V
5~
)

or equivalently,

N X + 74 X — YBa cia SB Ba Ba

~B 
X

5 
+ 

~ BB X88 — V55 -

Substituting the expression (vii) for (X ,X
8 

) into these latter two equalities and

rearranging terms, we obtain

~
M8a M

1 
(M/M )~) (;: ~;:) 

= (V
5 

Y55 ) -

This completes the proof of the lemma.

We conclude this paper by discussing a few points about nonnegative matrices H

whose inverses are K-matrices. Such matrices H certainly belong to C n P . The next

proposition shows that all principal submatrices and Schur complements of such matrices

H have inverses which are also K-matrices.

n X n  —1
Proposition 4. Let H a P be such that 14 is a K-matrix. Then the following are

true :

(20) If M is a principal submatrix of 74 , then a K

(21) If 
~:: 

is a principal submatrix of M , then (M/M ) l a K - In particular,

tM/M~~ is nonnegative .

Proof: In fact, we have MX = I where x 74 1 a K - Conclusion (20) follows from (i)

which gives H (X/X 85 ) = I and from the fact that (X/X58 
) a K . Here S is the

complement of a in (1,... ,n) - Similarly, conclusion (21) follows from (vi) which gives

(WM
~~ 

)X88 I - This completes the proof of the proposition.

Remark 3. As a matter of fact, the two equalities

~~~ 
(X/X~8

) — I and 
~~
‘M
~~
)
~

css = 1

used in the proof of Proposition 4 are direct consequences of the following explicit form-

ula for the inverse of a matrix in partitioned form (see [4) e.g.): if

— 12—
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-
~~~~~~~~~~ 

- 
~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~ ...; . -

. - . -

(A B
W~~~~f

D

then

-l (W/A)~~ -A 1
B(W/A)~~

— 
1 1 -

-D C(W/D) (W/D) 1

Reinark 4. Markham [26] showed that if M a  ~~~~~ is such that M ’ a K, then M 1 
a K

for every a of order a - 1 - Conclusion (20) is a generalization as well as a consequence

of thjs result.

The condition that each of the proper principal submatrix of a matrix M has an

inverse which is a K-matrix is not sufficient for M 1 
itself to be a K-matrix even when

N is nonr egative and a P-matrix . This is illustrated by the following example :

ri 0 0 0

1 0 0
M =  J~ ~ 1 0 -

L1 1 1 1

=13- 
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